Few-Shot Learning with Graph Neural Networks

نویسندگان

  • Victor Garcia
  • Joan Bruna
چکیده

We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recently proposed few-shot learning models. Besides providing improved numerical performance, our framework is easily extended to variants of few-shot learning, such as semi-supervised or active learning, demonstrating the ability of graph-based models to operate well on ‘relational’ tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iclr 2018 F Ew - S Hot L Earning with G Raph N Eural N Et - Works

We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...

متن کامل

Modelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network

Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...

متن کامل

Siamese Networks for One Shot Learning using Kernel Based Activation functions

The lack of a large amount of training data has always been the constraining factor in solving a lot of problems in machine learning, making One Shot Learning one of the most intriguing ideas in machine learning. It aims to learn information about object categories from one, or only a few, training examples, and for certain image classification tasks, has successfully been able to get results c...

متن کامل

Make Svm Great Again with Siamese Kernel for Few-shot Learning

While deep neural networks have shown outstanding results in a wide range of applications, learning from a very limited number of examples is still a challenging task. Despite the difficulties of the few-shot learning, metric-learning techniques showed the potential of the neural networks for this task. While these methods perform well, they don’t provide satisfactory results. In this work, the...

متن کامل

Make Svm Great Again with Siamese Kernel for Few-shot Learning

While deep neural networks have shown outstanding results in a wide range of applications, learning from a very limited number of examples is still a challenging task. Despite the difficulties of the few-shot learning, metric-learning techniques showed the potential of the neural networks for this task. While these methods perform well, they don’t provide satisfactory results. In this work, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.04043  شماره 

صفحات  -

تاریخ انتشار 2017